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Abstract. It is shown that a realization ofW1+∞ algebra in the KP hierarchy is equivalent to
a difference operator realization of the simplest subalgebra of aq-discretized Virasoro algebra
(D-Vir (+,0)c ). To this end, we first introduce the non-commutative flow of the KP hierarchy
and see theadditional flow corresponds to the element of theW1+∞ algebra. It is then shown
that the new flow constructed by use of the additional one can be recognized as an action of
D-Vir (+,0)c in the Fock representation of the KP hierarchy.

1. Introduction

In research on integrable systems, discretization of variables provides important information
about the systems. Stability under discretization characterizes a certain class of integrable
systems which are completely integrable. For example, every soliton equation of the KP
hierarchy [1, 2] has a discrete analogue which is common to all equations. Namely, a single
bilinear difference equation of Hirota reproduces every soliton equation of the KP hierarchy
by taking certain continuous limits of the variables [3, 4]. This remarkable property of
soliton-type equations should be compared with a generic case in which discretization of
variables in general makes nonlinear equations create chaos [5]. This means that there exist
some symmetries which preserve integrability under discretization of variables.

Discretization of differential operators also plays a key role inq-deformed conformal
field theories. Theq-deformed Knizhnik–Zamolodchikov (q-KZ) equation of Frenkel and
Reshetikhin [6] has been formulated by considering the representation theory ofUq(ŝl2),
and is essentially realized through discretization of variables of the original KZ equation.

We are interested in relations which remain true irrespective of whether they are
continuous or discrete. Such relations will not only characterize completely integrable
systems but also add to the understanding of the boundary between deterministic and non-
deterministic nonlinear equations.

In order to claim this idea, in a series of papers [7] we proposed a deformation of
the Virasoro algebra which was realized by aq-discretization of differential operators, and
called it D-Virasoro. This algebra was shown to admit both fermionic and bosonic free
field representations [16]. It was constructed such that a realization of the Virasoro algebra
was reproduced in the continuous limit (q → 1). Although it was derived in as general
a form as possible, there remains the problem of clarifying its relation with other known
symmetries. An indication can be seen if we consider the above algebra from the Moyal-
algebraic point of view. The Moyal bracket algebra, which was provided in [19–21], has a
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large structure in the sense that this algebra is recognized as a deformation of the Poisson
algebra.D-Virasoro is simply a series of subalgebras of it.

In this paper we confirm, by specific realization, that the simplestD-Virasoro subalgebra
is quite simply theW1+∞ subalgebra of the Moyal algebra [11]. This result provides a new
interpretation of theW1+∞ algebra. Namely, it enables us to understand that theW1+∞
algebra emerges as a result of a proper discretization of the Virasoro algebra.

In section 2, we introduce the non-commutative symmetry flow of the KP hierarchy
which is found in [8] and generalized in [9, 10]. They will be shown to be equivalent
to a realization of theW1+∞ algebra. In section 3, we first give a brief review of the
discretization of the Virasoro algebra (D-Virasoro). From the fact that one of theD-Virasoro
subalgebras (D-Vir (+,0)c ) has the free fermion field representation, we discuss the relation
betweenD-Vir (+,0)c andW1+∞ through the Fock representation of the KP hierarchy.

2. W1+∞ in the KP hierarchy

The KP hierarchy is given by use of the pseudo-differential operatorsL = K∂K−1

(K = 1 + ∑
j>0 aj (x, t)∂

−j ) as

∂K

∂tr
= BrK −K∂r Br = (K∂rK−1)+ (2.1)

where (· · ·)+ denotes the differential operator part. The action∂r can be understood as
the vector field which determines the dynamical flow (KP flow) not only on the pseudo-
differential operator ring but also on the universal Grassmann manifold (UGM), because of
the isomorphism between them. From (2.1), we immediately get [∂r , ∂r ′ ] = 0. Hence the
KP flow is simply the infinite commutative symmetry.

In contrast to the KP flow, we can also consider the non-commutative flow, i.e. flow
which does not commute with each other, but does commute with the KP flow [8]. First
recall that (2.1) is equivalent to the following system of linear equations:

Lφ = zφ ∂rφ = Lr+φ (2.2)

where the wavefunctionφ(z, t) is given by

φ(z, t) = K exp
∑
r

trz
r ≡ Keξ . (2.3)

Similarly, the derivation∂z to the wavefunction is written in terms of the pseudo-differential
operators as

∂φ

∂z
= K

( ∞∑
r=1

rtr∂
r−1

)
K−1Keξ ≡ Mφ . (2.4)

Then we getzm∂lz φ = MlLmφ (m ∈ Z, l ∈ Z>0). It enables us to consider the vector field
as

∂ml : ∂mlK = −(MlLm)−K. (2.5)

Moreover, betweenzm∂lz and∂ml there is a Lie algebra isomorphismzm∂lz 7→ ∂ml . Therefore
∂ml yields the following relations:

[∂ml, ∂r ] = 0

[∂ml, ∂m′l′ ] =
∞∑
j=1

{(
m

j

) (
l

j

)
−

(
m′

j

) (
l′

j

)}
j ! ∂m+m′−j, l+l′−j .

(2.6)
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In general, the operators spanned by the differential operators{zm∂lz;m ∈ Z, l ∈ Z>0} realize
an infinite-dimensional Lie algebra,w1+∞. After all, the vector fields∂mk are simply the
w1+∞ flow.

The central extended algebra ofw1+∞, W1+∞ [11], is related to the infinitesimal
Bäcklund transformation of theτ function of the KP hierarchy

τ → τ + εX(z, ζ ) τ . (2.7)

HereX(z, ζ ) is the vertex operator

X(z, ζ ) = : V (z)V ∗(ζ ) : −1

z − ζ

V (z) = exp

( ∞∑
j=1

zj tj

)
exp

(
−

∞∑
j=1

1

j
z−j ∂j

)

V ∗(z) = exp

(
−

∞∑
j=1

zj tj

)
exp

( ∞∑
j=1

1

j
z−j ∂j

)
.

(2.8)

From equation (2.5) the action of∂mk on the wavefunction becomes

∂mlφ = −(MlLm)−φ . (2.9)

Rewritingφ by use of the vertex operator and theτ function,

φ(z, t) = V (z) τ

τ
= τ(t1 − 1

z
, t2 − 1

z2 , . . .)

τ (t1, t2, . . .)
eξ(z,t) (2.10)

then we get

∂ml τ =
∮

dz

2π i

(
zm∂lz V (z)

)
V ∗(z) τ (2.11)

(see the appendix) [12, 13]. If we define∂̂ml ∈ W1+∞, we also obtain

∂̂ml τ =
∮

dζ

2π i
zm∂lz X(z, ζ )

∣∣
z=ζ τ . (2.12)

Several authors also discussed theW1+∞ structure by using this non-commuting flow
[14, 15]. In the following section, we try to clarify that theW1+∞ algebra can be understood
as a deformation of the Virasoro algebra.

3. The relation betweenW1+∞ and D-Virasoro

Let us consider a kind ofq-difference operator

L(n)m (z) = zm
qn(z∂z+m/2) − q−n(z∂z+m/2)

qn − q−n . (3.1)

These operators{L(n)m ;m ∈ Z, n ∈ Z>0} satisfy the infinite-dimensional Lie algebra which
obeys the following commutation relations:[

L(n)m ,L(n
′)

m′

]
= C(m n

m′ n′) L(n+n′)
m+m′ + C(m n

m′ −n′) L(n−n′)
m+m′ (3.2)

where

C(m n
m′ n′) =

[
1
2(nm

′ − n′m)
]

[n+ n′]
[n][n′]

[x] = qx − q−x

q − q−1
.
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In the limit of q → 1, L(n)m → lm = zm(z∂z + m/2). lm is simply a realization of the
Virasoro algebra

[ lm , lm′ ] = (m′ −m) lm+m′ . (3.3)

Then we can regard (3.2) as a deformation of the Virasoro algebra, i.e. if we ‘discretize’
the differential operator in the above realization of Virasoro, then we get a realization of
a larger algebra. In this limited sense, we choose to call{L(n)m } a q-discretized Virasoro
algebra, orD-Virasoro for short.D-Virasoro has a more general form (D-Vir) [7, 16].[
L(n,r;±)m ,L(n′,r;±)

m′

]
= C(m n+r

m′ n′+r )± L(n+n′+r,r;±)
m+m′ + C(m n−r

m′ n′−r )± L(n+n′−r,r;±)
m+m′

+C(m n+r
m′ −n′+r )± L(n−n′+r,r;±)

m+m′ + C(m n−r
m′ −n′−r )± L(n−n′−r,r;±)

m+m′

C(m n+r
m′ n′+r )± ≡

[
1
2((n+ r)m′ − (n′ + r)m)

]
− [n+ n′ + r]∓

2 [n]∓ [n′]∓ [r]±

[x]+ ≡ qx + q−x

2
[x]− ≡ [x] .

(3.4)

(The double signs on both sides correspond to each other.) Equation (3.2) is a subalgebra of
D-Vir (set r = 0 in the (+)-type). Then we denote itD-Vir (+,0). We remark thatD-Vir (+,0)

is formally identified with the first (a = 0) subalgebra of the Moyal algebra in [20, section
V]†. The central extension ofD-Vir (+,0) is also obtained (D-Vir (+,0)c ). It has the free fermion
field representation

L̂(n)m = 1

2

∑
p∈Z

A
(n)
p,m−p : ψm−p ψp : (3.5)

A
(n)
p,m−p = −

[
2p −m

2

]
n;−

≡ −
[

2p −m

2

]/
[n] . (3.6)

Combining these facts with the results of the KP hierarchy [2], it is natural to think
that D-Vir (+,0)c describes some symmetry structure of the KP hierarchy. Now we regardz

in (3.1) as the spectral parameter, and expandL(n)m in powers ofz∂z. Then we get

L(n)m =
∞∑
j=0

qnm/2 − (−1)j qnm/2

qn − q−n
(nλ)j

j !

∞∑
l=0

cjl z
m+l∂ lz ≡

∞∑
l=0

(sm)nl z
m+l∂ lz (3.7)

wherecjl is

cjl =
l∑

α=1

(−1)l−α αj

(l − α)! α!
(j, l > 1) cl0 = c0l = δl,0 (3.8)

andλ = ln q (qN 6= 1; ∀N ∈ Z>0). From the above discussions

L(n)m φ =
[ ∞∑
l=0

(sm)nl M
lLm+l

]
φ (3.9)

leads us to consider the flow as

L(n)m ≡
∞∑
l=0

(sm)nl ∂m+l,l . (3.10)

† This fact was pointed out by a referee.
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If we defineL̂ by replacing∂ with ∂̂ in (3.10), we obtain

L̂(n)m τ =
∮

dζ

2π i
L(n)m (z)X(z, ζ )

∣∣
z=ζ τ

=
∮

dζ

2π i
ζm

qnm/2X(qnζ, ζ )− q−nm/2X(q−nζ, ζ )
qn − q−n τ (3.11)

(cf equation (2.12)).
On the other hand, for the double expansion ofX(z, ζ )

X(z, ζ ) =
∞∑
l=0

(z − ζ )l

l !

∞∑
p=−∞

z−p−l W (l)
p (3.12)

we can show that

∂̂m+l,l τ = 1

l + 1
W(l+1)
m τ. (3.13)

This means that the coefficientW(k)
m is simply the element ofW1+∞. Then

L̂(n)m τ =
∞∑
k=1

(s̃m)n, k−1 W
(k)
m τ (3.14)

((s̃m)n,k−1 = k−1(sm)n,k−1). Now we understand that there is a one-to-one correspondence
betweenL̂(n)m andW(k)

m . At the end of this section, we make sure thatL̂(n)m can be recognized
as the action ofD-Vir (+,0)c on τ . In the Fock representation [2], the functionτ is defined as

τ(t, g) = 〈0|eH(t)g|0〉 g ∈ GL(∞) (3.15)

where

H(t) =
∞∑
r=1

Hrtr Hr =
∑
l∈Z+ 1

2

: ψlψ
∗
r−l : .

The action of the vertex operators is given by

X(z, ζ ) τ (t, g) = 〈0|eH(t) : ψ(z)ψ∗(ζ ) : g|0〉. (3.16)

Therefore equation (3.11) becomes

L̂(n)m τ =
∮

dz

2π i
〈0|eH(t) :

(L(n)m ψ(z)) ψ∗(z) : g|0〉

= 〈0|eH(t)
(

−1

2

∑
l

[
2l −m+ 1

2

]
n;−

: ψlψ
∗
m−l :

)
g|0〉

= 〈0|eH(t)L̂(n)m g|0〉. (3.17)

In the last line, we use equation (3.5).
It is worthwhile to note that the degree of freedom of the conformal spink in W1+∞

changes one of the parameters,n, in D-Vir (+,0)c , which is associated with the difference
interval of the new flow. This fact implies thatn contains some physical information.
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4. Concluding remarks

We have analysed how the simplestD-Virasoro subalgebra,D-Vir (+,0), can be regarded as
the W1+∞ algebra. The implication of this fact is significant. TheW -infinity symmetry
is considered to be a universal symmetry structure for integrable systems in the sense that
such a symmetry often appears in various theories. For example, in [22] it was indicated
that theW -infinity algebras provided a unified viewpoint of various integrable hierarchies
originated in the KP hierarchy. On the other hand, as mentioned in the introduction, some
discretization of the variables preserves the integrability of the system. ThereforeD-Vir (+,0)

is not only a deformation of the Virasoro algebra, but is also a discretization of the spectral
parameter which preserves the integrability of the KP hierarchy. This point of view should
provide useful tools for understanding the structure of integrable systems, such as soliton
theories, 2D gravity, etc.

In what follows we make some remarks on the subject.
(i) As mentioned above, we have not used the whole structure ofD-Vir. The remaining

part must also have a rich structure.
(a) If we consider theD-Vir (+,r 6=0) algebra, the fermion is no longer a unique constituent.
In this case it is natural to think that the representation is also ‘discretized’, i.e. we must
consider the deformation of the KP hierarchy itself. It would be interesting to know whether
or not such a system is still integrable.
(b) Another type ofD-Virasoro subalgebra,D-Vir (−), is also related to theW -infinity algebra.
From the fact that the generator ofD-Vir (−,r=1) is realized by ordinary free bosons in (3.5),
it is reasonable to guess that it is related to theW∞ algebra [17].
(c) The representation theory ofW -infinity algebras has progressed much recently [23, 24].
The status ofD-Vir (+,0) in the theory should be clarified.

(ii) Even though we have not made use of the fact, it is known that the algebra of Moyal
brackets [18] underliesD-Virasoro [7]. Specifically, the latter can be seen to be a subalgebra
of Moyal, as detailed in [19–21]. This suggests that the Moyal structure must contain much
information on integrability. For example, in [25] it was shown that quantizations on
C∞(T ∗R) generally parametrize realizations of the integrable dynamical system, and the
Hamilton form on the phase space was established. In particular, some soliton equations
(KdV, Boussinesq, KP) were discussed for the case of the Moyal formalism. In [26],
starting with the dispersionless KP hierarchy (d-KP) [27, 28] which is associated with the
Poisson algebraic structure, an attempt was made to reconstruct the KP hierarchy as the
Moyal-like deformation of d-KP. Therefore these examples support our claim that study of
the symmetry with the Moyal structure seems to be of value in obtaining a general view of
integrable systems. Moreover, in contrast to the case ofq-deformation, which corresponds
to the quantization on the Hilbert space, we can proceed with the Moyal-like deformation
in parallel with theq-deformation.

(iii) In [29], the W1+∞ algebra was discussed in the context of the Hamilton structure of
the soliton system [30]. It would also be interesting to investigate the connection between
the result of the present paper and such a structure.

Acknowledgments

We would like to thank Cosmas Zachos for his interest in our work and some helpful
comments on the Moyal bracket algebra. We also acknowledge one of the referees for
useful suggestions. This work is supported financially by a Fiscal Year 1994 Fund for Special
Research Project at Tokyo Metropolitan University, and a Grant-in-Aid for General Scientific



W1+∞ as a discretization of Virasoro algebra 4147

Research from the Ministry of Education, Science and Culture, Japan (No 06835023).

Appendix

In this appendix, we prove equation (2.12). We first write down the action of the operator
zm∂kz on the wavefunctionφ(z) = Keξ(t,z) in terms of pseudo-differential operators:

zm∂lzφ(z) = K0l∂meξ . (A.1)

After multiplying the adjoint wavefunctionφ∗(z) = (K∗)−1e−ξ(t,z) from the right on both
sides, we integrate along a contour aroundz = ∞:∮

dz

2π i

(
zm∂lzφ(z)

)
φ∗(z) =

∮
dz

2π i

(
K0l∂mexz

) (
(K∗)−1e−xz) (A.2)

and look at how each side is expressed by using theτ function.

The left-hand side of (A.2)

The wavefunctions can be written as

φ(z, t) = V (z) τ

τ
φ∗(z, t) = V ∗(z) τ

τ
(A.3)

where the vertex operatorsV andV ∗ are as defined in section 2. They satisfy the following
anticommutation relation:

{V (z), V ∗(ζ )} = δ

(
z

ζ

)
. (A.4)

The δ function is defined by the formal expansion

δ(z) =
∑
k∈Z

zk. (A.5)

If we use (A.4) and the bilinear identity for the wavefunctions∮
dz

2π i
φ(z, t) φ∗(z, t ′) = 0 (A.6)

we can write the bilinear formφ(z)φ∗(ζ ) by means of the vertex operators and theτ
function as

V (z)V ∗(ζ ) (∂ ln τ).

Hence the left-hand side of (A.2) is written as∮
dz

2π i

(
zm∂kz V (z)

)
V ∗(z) (∂ ln τ) . (A.7)

The right-hand side of (A.2)

We use the following lemma [12, 13].

Lemma. For any two pseudo-differential operatorsP andQ∮
dz

2π i
(Pezx)(Qe−zx) = res∂ PQ

∗ (A.8)

where res∂
∑
ak∂

k = a−1.
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Then the right-hand side of (A.2) becomes

res∂ K0
l∂mK−1 = res∂ M

lLm = res∂ (M
lLm)−K = −res∂ ∂mlφ(z) = −∂mlw1 . (A.9)

Sincew1 can be written in terms of theτ function asw1 = −∂ ln τ , the right-hand side of
(A.9) becomes∂ml(∂ ln τ).

Combining these results with (2.6) andV (z)V ∗(ζ )∂ = ∂V (z)V ∗(ζ ), we finally obtain
equation (2.12).
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